The Number of Near-Coherence Classes of Ultrafilters

نویسندگان

  • Taras Banakh
  • Andreas Blass
چکیده

We prove that the number of near-coherence classes of non-principal ultrafilters on the natural numbers is either finite or 2c. Moreover, in the latter case the Stone-Čech compactification βω of ω contains a closed subset C consisting of 2c pairwise non-nearly-coherent ultrafilters. We obtain some additional information about such closed sets under certain assumptions involving the cardinal characteristics u and d. Applying our main result to the Stone-Čech remainder βR+ −R+ of the half-line R+ = [0,∞) we obtain that the number of composants of βR+ − R+ is either finite or 2 c.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Number of Near-Coherence Classes of Ultrafilters

We prove that the number of near-coherence classes of non-principal ultrafilters on the natural numbers is either finite or at least the larger of the dominating number and the minimum number of generators for such an ultrafilter.

متن کامل

On Milliken-Taylor Ultrafilters

We show that there may be a Milliken-Taylor ultrafilter with infinitely many near coherence classes of ultrafilters in its projection to ω, answering a question by López-Abad. We show that k-coloured Milliken-Taylor ultrafilters have at least k + 1 near coherence classes of ultrafilters in its projection to ω. We show that the Mathias forcing with a Milliken-Taylor ultrafilter destroys all Mill...

متن کامل

The near Coherence of Filters Principle Does Not Imply the Filter Dichotomy Principle

We show that there is a forcing extension in which any two ultrafilters on ω are nearly coherent and there is a non-meagre filter that is not nearly ultra. This answers Blass’ longstanding question (1989) of whether the principle of near coherence of filters is strictly weaker than the filter dichotomy

متن کامل

Near coherence and filter games

We investigate a two-player game involving pairs of filters on ω. Our results generalize a result of Shelah ([7] Chapter VI) dealing with applications of game theory in the study of ultrafilters.

متن کامل

ON SOFT ULTRAFILTERS

In this paper, the concept of soft ultrafilters is introduced and some of the related structures such as soft Stone-Cech compactification, principal soft ultrafilters and basis for its topology are studied.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005